Ana sayfa
  • Belimo web siteleri

    Amerika Kıtası

    • Brezilya
    • Kanada
    • Karayipler, Latin Amerika ve Amerika Birleşik Devletleri

    Avrupa, Orta Doğu ve Afrika

    • Almanya
    • Arnavutluk
    • Avusturya
    • Belarus
    • Belçika
    • Birleşik Arap Emirlikleri (FZE)
    • Birleşik Krallık
    • Bosna-Hersek
    • Bulgaristan
    • Çek Cumhuriyeti
    • Danimarka
    • Estonya
    • Finlandiya
    • Fransa
    • Güney Afrika
    • Gürcistan
    • Hırvatistan
    • Hollanda
    • İrlanda
    • İspanya
    • İsrail
    • İsveç
    • İsviçre
    • İtalya
    • Kazakistan
    • Kuzey Makedonya
    • Letonya
    • Litvanya
    • Macaristan
    • Mısır
    • Norveç
    • Polonya
    • Romanya
    • Sırbistan ve Karadağ
    • Slovakia
    • Slovenya
    • Suudi Arabistan
    • Türkiye
    • Ukrayna
    • Yunanistan

    Asya-Pasifik

    • Avustralya
    • Çin
    • Endonezya
    • Filipinler
    • Hindistan
    • Hong Kong, Çin
    • Japonya
    • Kamboçya
    • Kore
    • Makao, Çin
    • Malezya
    • Myanmar
    • Singapur
    • Tayland
    • Tayvan, Çin
    • Vietnam
    • Yeni Zelanda
    Türkçe

    Deutsch

    Français

    İngilizce

    中文

    Português

    Español

    Español

    Français

    Italiano

    Nederlands

    Türkçe

    Polski

    Norsk

    Suomalainen

    Svenska

    İngilizce

    Magyar

    Eesti keel

    Русский

    Latviski

    Lietuvių

    български

    language.el_GR

    עִברִית

    Română

    Slovenščina

    Slovenský

    Srpski

    Mакедонски

    Hrvatski

    Shqiptare

    Srpski

  • Belimo web siteleri

    Amerika Kıtası

    • Brezilya
    • Kanada
    • Karayipler, Latin Amerika ve Amerika Birleşik Devletleri

    Avrupa, Orta Doğu ve Afrika

    • Almanya
    • Arnavutluk
    • Avusturya
    • Belarus
    • Belçika
    • Birleşik Arap Emirlikleri (FZE)
    • Birleşik Krallık
    • Bosna-Hersek
    • Bulgaristan
    • Çek Cumhuriyeti
    • Danimarka
    • Estonya
    • Finlandiya
    • Fransa
    • Güney Afrika
    • Gürcistan
    • Hırvatistan
    • Hollanda
    • İrlanda
    • İspanya
    • İsrail
    • İsveç
    • İsviçre
    • İtalya
    • Kazakistan
    • Kuzey Makedonya
    • Letonya
    • Litvanya
    • Macaristan
    • Mısır
    • Norveç
    • Polonya
    • Romanya
    • Sırbistan ve Karadağ
    • Slovakia
    • Slovenya
    • Suudi Arabistan
    • Türkiye
    • Ukrayna
    • Yunanistan

    Asya-Pasifik

    • Avustralya
    • Çin
    • Endonezya
    • Filipinler
    • Hindistan
    • Hong Kong, Çin
    • Japonya
    • Kamboçya
    • Kore
    • Makao, Çin
    • Malezya
    • Myanmar
    • Singapur
    • Tayland
    • Tayvan, Çin
    • Vietnam
    • Yeni Zelanda
  • DE FR EN 中文 PT ES ES FR İT NL TR PL NO Fİ SE EN HU ET RU LV LT BG EL İW RO SL SK SR MK HR SQ BA
Ana sayfa

  1. Ana sayfa
  2. Blog

How Does the Energy Valve Respond to Low ΔT and a Call for Additional Heat Transfer?

Bob Walker
tarafından Per, May 12, 2022 @ 03:01 ÖS tarihinde yayınlandı

Often asked if the Energy Valve is preventing flow to the coil, how can it maintain the temperature needs of the load? To explore this, let's first examine the Delta T Management function of the Energy Valve. The Delta T Manager monitors the coil ΔT and compares this value with the ΔT setpoint. If the actual ΔT is below the ΔT setpoint, the logic will reduce the flow to bring ΔT back to the setpoint.

Let's stop right here. Are we going to reduce the flow to bring ΔT back to the setpoint? How can the temperature setpoint for the space be maintained if we reduce the flow to the coil?

Let's examine this idea a bit closer. The plot above shows the performance characteristic of a selected cooling coil. The green line represents the average power curve of the coil, while the blue line is the plot of the average differential water temperature through the coil.

Power Output = Q (Btu/h) = 500 * GPM * ΔT

As flow increases, power increases, and differential temperature decreases (and vice-versa). The plot illustrated the flow increases (to the right) ΔT drops. That's how it's supposed to work. However, every coil has a point where additional flow to the coil does not produce extra power (indicated by the dot at the top of the vertical orange line). This is called the power saturation point of the coil.

As flow increases past the power saturation point, the power output remains constant, flow increases, and ΔT decreases.

As a result, more water is pumped; ΔT is reduced, and additional power (or heat transfer) is generated from the coil. A great result: let's answer the question about preventing flow to the coil that will stem from meeting the temperature needs of the load? Or have I?
Why does flow increase beyond the power saturation point of the coil? Simple, the control loop is calling for more cooling. Therefore, the valve continues to open, increasing flow through the coil. However, the power doesn't expand beyond the power saturation point. The sensed temperature is not changing, and cooling is not increasing. Therefore, any flow past the power saturation point does not affect the ability to maintain the perceived temperature.
The ΔT setpoint corresponds to the power saturation point of the coil. When the ΔT falls below the setpoint, the Delta-T Manager will prevent the valve from opening, allowing the flow to occur. Since we know that any flow past the power saturation point of the coil does not result in additional cooling, this flow is wasted energy and does not add to the comfort of the occupants.

Etiketler: Green Building Technology, Pressure Independent Valves, Technical Tips

Blog'a Geri Dön

İlgili Makaleler

Online Learning Resources & Tools, Technical Tips

What is CV, and How Do I Calculate It?

Valve Flow Coefficient (Cv) is defined as the volume of water at 60°F that will flow through a fully open...

1 minute read Daha Fazla Oku

Technical Tips

Importance of Dampers and Actuators in HVAC Systems

Dampers are the final control devices for almost all airflow in HVAC systems. Actuators are the interface between the control system.

2 minute read Daha Fazla Oku

Sensors, Technical Tips

Understanding HVAC Sensors

Some of the most critical sensors used in HVAC systems are pressure, temperature, humidity, air quality, occupancy, and room sensors.

1 minute read Daha Fazla Oku

Belimo'ya Hoş Geldiniz {{js-currentCountryName}}

{{js-currentCountryText}}
Bize Ulaşın Gizlilik Politikası Gizlilik ayarlarını değiştir
'+41 43 843 61 11
Abone ol
BELIMO Holding AG, Brunnenbachstrasse 1, 8340 Hinwil (İsviçre)