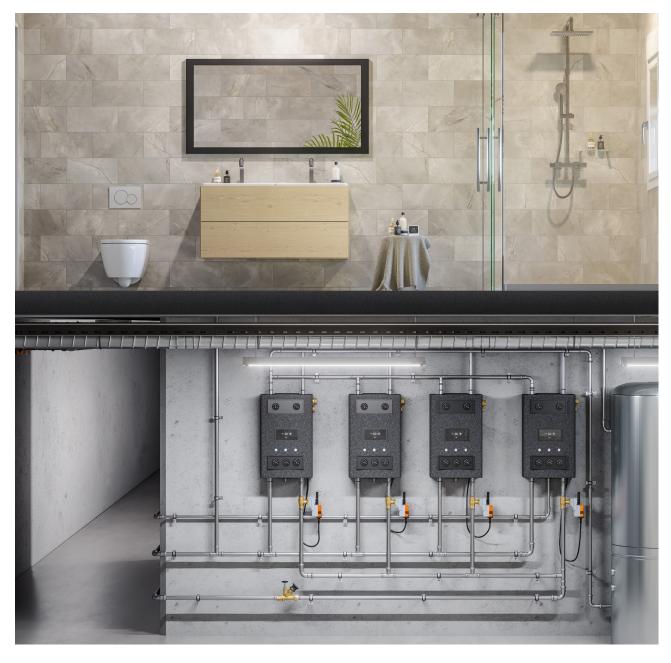


Applikation Trinkwasserventile

Ausgabe 2025-10/A


Vorwort

Vielen Dank für Ihr Interesse an unseren Produkten. In dieser Broschüre finden Sie Anwendungsbeispiele für den Einsatz von motorisierten 2-Weg Auf/Zu-Trinkwasserventile. Es werden darin innovative Produkte von Belimo gezeigt, die Sie in Ihren Trinkwasserapplikationen einsetzen können. Unsere Empfehlungen und Hinweise ersetzen die individuelle Anlagenplanung nicht.

Sämtliche Kapitel sind wie folgt gegliedert:

- Prinzipschema
- Anwendungsbeschreibung
- Materialliste
- Belimo Eigenschaften und Vorteile

Die Ausschreibungstexte finden Sie zusammengefasst ab Seite 14.

Produktübersicht

Belimo bietet zertifizierte 2-Weg-Auf/Zu-Trinkwasserventile in Kombination mit kompakten Drehantrieben, wahlweise mit oder ohne Notstellfunktion. Diese kompakte und wartungsfreie Einheit sorgt für einen langen und sorgenfreien Betrieb.

Ihre Vorteile:

- Zertifiziert für die Anwendung in Trinkwasserinstallationen
- Zukunftssicherheit dank Verwendung von zeitgemässen, entzinkungsbeständigen Materialien
- Wartungsfreier Einsatz dank Beständigkeit gegen Verschmutzung und Ablagerungen
- Motorisierung mit den bewährten Standardantrieben von Belimo

Auf/Zu-Kugelhahn:

- Temperaturbereich: geeignet für Trinkwassertemperaturen von 5...100°C
- Druckbeständigkeit: für hohe Nenndrücke bis PN 25/40 zugelassen
- Langlebig und dicht: wartungsfrei und luftblasendicht
- Materialqualität: moderne, entzinkungsbeständige Materialien (DZR/CR-Standard) für langfristige Sicherheit und Lebensdauer
- Zertifizierung: europaweit einsetzbar dank umfassender Zertifizierungen (ACS, DVGW, WRAS, ÜA)

Motorisierung:

- Kompakt und zuverlässig: bewährte Standard-Drehantriebe mit oder ohne Notstellfunktion oder Schnellläufer-Antriebe
- Platzsparend: für DN-15-Ventile mit der kompakten CQ..-Antriebsserie verfügbar
- Kommunikative Antriebsvarianten erlauben einen transparenten Betrieb
- Integration von Sensoren direkt am Antrieb

Geräteauswahl

Ventilsortiment			Motorisierung ohne Notstellfunktion		Motorisierung mit Notstellfunktion						
DN	PN	RP ["]	K _{vs} [m ³ /h]	CQA	LRA	NRA	SRA	CQKA	LRF	NRFA	SRFA
15		1/2	16	-				•	_		-
15	40	1/2	16		•		-				_
20	- 40	3/4	32		-			_			-
25	-	1	40				_				_
32		1 1/4	63								_
40	25	1 1/2	100				_				-
50	-	2	150				-		-		-
	15 15 20 25 32 40	15 15 20 25 32 40 25	15 1/2 15 40 1/2 20 3/4 25 1 32 11/4 40 25 1 1/2	15 1/2 16 15 40 1/2 16 20 3/4 32 25 1 40 32 11/4 63 40 25 11/2 100	DN PN RP["] K _{vs} [m³/h] CQA 15 1/2 16 ■ 15 40 1/2 16 - 20 3/4 32 - 25 1 40 - 32 11/4 63 - 40 25 1 1/2 100 -	DN PN RP["] K _{vs} [m³/h] CQA LRA 15 1/2 16 ■ - 15 40 3/4 32 - ■ 20 3/4 32 - ■ 25 1 40 - ■ 32 11/4 63 - - 40 25 1 1/2 100 - -	DN PN RP["] K _{vs} [m³/h] CQA LRA NRA 15 1/2 16 ■ - - 15 1/2 16 - ■ - 20 3/4 32 - ■ - 25 1 40 - ■ - 32 11/4 63 - - ■ 40 25 11/2 100 - - -	DN PN RP["] K _{vs} [m³/h] CQ.A LR.A NR.A SR.A 15 1/2 16 ■ - - - 15 1/2 16 - ■ - - 20 3/4 32 - ■ - - 25 1 40 - ■ - - 32 11/4 63 - - ■ - 40 25 11/2 100 - - - ■	DN PN RP["] K _{vs} [m³/h] CQA LRA NRA SRA CQKA 15 1/2 16 ■ - - - — 15 1/2 16 - ■ - - - - 20 3/4 32 - ■ - - - - 25 1 40 - ■ - - - - 32 11/4 63 - - - - - - 40 25 11/2 100 - - - - - -	DN PN RP["] K _{vs} [m³/h] CQA LRA NRA SRA CQKA LRF 15 1/2 16 ■ - - - - ■ - 20 3/4 32 - ■ - - - ■ 25 1 40 - ■ - - - ■ 32 11/4 63 - - - ■ - - - 40 25 11/2 100 - - - - - - -	Ohne Notstellfunktion DN PN RP ["] K _{vs} [m³/h] CQA LRA NRA SRA CQKA LRF NRFA 15 1/2 16 ■ - - - — - - 20 3/4 32 - ■ - - - — - - 25 1 40 - ■ - - - - — - - 32 11/4 63 - - ■ - - - - - - 40 25 11/2 100 -

Legende

Produkte

Symbol	Name
M	2-Weg-Auf/Zu-Trinkwasser- ventile mit Drehantrieb

Sensoren

Symbol	Name	Symbol	Name
T	Temperatursensor		Leckageschalter
	Präsenzmelder		

Komponenten

Symbol	Name	Symbol	Name
	Pumpe	+	Wärmetauscher (Frischwasserstation)
	Pufferspeicher		Trinkwassererwärmer
Y	Ablauf	_	

Leitungen

Linienart	Name
	Trinkwasser kalt (grün)
	Trinkwasser warm (rot gestrichelt)
	Trinkwasser warm Zirkulationsleitung (violett)
	Warmwasser Heizung Vorlauf (rot)
	Warmwasser Heizung Rücklauf (blau)

Inhaltsverzeichnis

Warmwasserbereitstellung durch Kaskadenschaltung

	Prinzipschema	
	Anwendungsbeschreibung	 6
	Materialliste	
	Belimo – Eigenschaften und Vorteile	 7
Automatische Spülung fi Trinkwassersystemen	ür die Aufrechterhaltung der Hygiene in	
	Prinzipschema	
	Anwendungsbeschreibung	 8
	Materialliste	
	Belimo – Eigenschaften und Vorteile	9
Automatische Absperrur	ng des Trinkwassers bei Leckage	
	Prinzipschema	10
	Anwendungsbeschreibung	 10
	Materialliste	
	Belimo – Eigenschaften und Vorteile	——— 11
Automatische Absperrur	ng der Trinkwasserleitungen bei Abwesenheit	
	Prinzipschema	10
	Anwendungsbeschreibung	 12
	Materialliste	
	Belimo – Eigenschaften und Vorteile	 13
Ausschreibungstexte		
	Ventile	14
	Antriebe	15

Warmwasserbereitstellung durch Kaskadenschaltung

\rightarrow

Prinzipschema

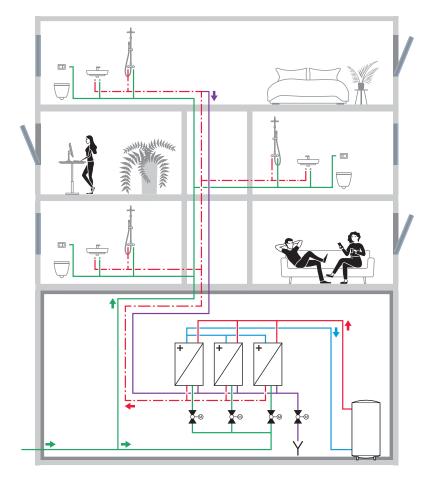


Abbildung beispielhaft

Anwendungsbeschreibung

In Verbindung mit Frischwasserstationen zur Trinkwassererwärmung werden zunehmend motorisierte 2-Weg-Trinkwasserventile eingesetzt. Durch die steigende Nachfrage nach hygienischer und energieeffizienter Trinkwassererwärmung werden diese Frischwasserstationen immer häufiger installiert. Eine Kaskadenschaltung steuert die 2-Weg-Trinkwasserventile und schaltet die Frischwasserstationen bedarfsgeregelt nacheinander zu, wodurch der Energieverbrauch minimiert wird.

Frischwasserstationen:

- Bedarfsgeregelte Erwärmung des benötigten Trinkwassers und Vermeidung von Stagnation, wodurch das Legionellenrisiko minimiert wird
- Hygienische Warmwasseraufbereitung ohne Speicherung
- Flexibel einsetzbar: von Ein- und Mehrfamilienhäusern bis hin zu grösseren Infrastrukturgebäuden

Pufferspeicher:

- Speichert Energie in Form von Heizwasser ohne direkten Kontakt zum Trinkwasser
- Gewährleistet eine konstante Warmwasserversorgung

Kaskadenschaltung:

- Steuert mehrere Frischwasserstationen in einer festgelegten Reihenfolge und aktiviert sie bei Bedarf mit motorisierten 2-Weg-Trinkwasserventilen
- Durch den Einsatz von Auf/Zu-Trinkwasserventilen können Frischwasserstationen entsprechend dem aktuellen Warmwasserbedarf geschaltet werden. So wird der Energieeinsatz optimiert und unnötige Erzeugung vermieden

Materialliste

Produkttyp von Belimo	Beschreibung	Anzahl
R2PW + LRA NRA SRA	2-Weg-Auf/Zu-Kugelhahn, Innengewinde, DN 1550, mit Drehantrieb 520 Nm	3

Vorteile		
Schnelle Trinkwasserversorgung		
Transparente Betriebsüberwachung durch nahtlose Integra-		
tion in Automationssysteme		
Zuverlässiges Produkt mit Support von Belimo		

Automatische Spülung für die Aufrechterhaltung der Hygiene in Trinkwassersystemen

Prinzipschema

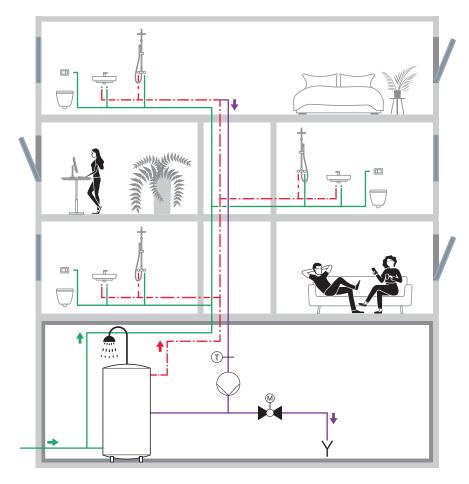


Abbildung beispielhaft

Anwendungsbeschreibung

Zum Spülen von Trinkwasserleitungen können motorisierte 2-Weg-Auf/Zu-Trinkwasserventile eingesetzt werden, um einen hohen Hygienestandard zu erreichen.

- Das Spülen von Trinkwasserleitungen verhindert Ablagerungen in den Trinkwasserleitungen und hält die Wasserhygiene aufrecht
- Gezielte Spülvorgänge entfernen Stagnationswasser und verhindern Biofilme
- Automatisierte Spülsysteme unterstützen einen hohen Hygienestandard und reduzieren den Wartungsaufwand

Hinweis

Der maximal zugelassene Differenzdruck (Δp_{max}) der Trinkwasserventile muss berücksichtigt werden.

Materialliste

Produkttyp von Belimo	Beschreibung	Anzahl
R2PW + LRA NRA SRA	2-Weg-Auf/Zu-Kugelhahn, Innengewinde, DN 1550, mit Drehantrieb 520 Nm	1

Vorteile
Transparente Betriebsüberwachung durch nahtlose Integra-
tion in Automatisierungssysteme
Effizienter Spülvorgang mit Schnellläufer-Antrieb
Keine Aktivierung bei Nulllast
Kein Energieverlust bei Nulllast
Zukunftssicherheit dank Verwendung von zeitgemässen,
entzinkungsbeständigen Materialien
Zuverlässiges Produkt mit Support von Belimo

Automatische Absperrung des Trinkwassers bei Leckage

Prinzipschema

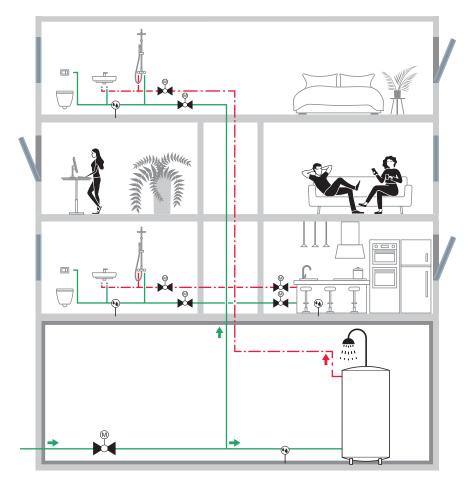


Abbildung beispielhaft

Anwendungsbeschreibung

Im Fall einer Leckage können motorisierte 2-Weg-Auf/Zu-Trinkwasserventile eingesetzt werden, um die Wasserversorgung automatisch abzusperren.

- Leckageschalter überwachen das Trinkwassersystem auf mögliche Leckagen, um Wasserschäden zu verhindern
- Wird eine Leckage detektiert, wird sofort ein Alarm ausgelöst
- Die motorisierten 2-Weg-Trinkwasserventile reagieren schnell, um den Wasserfluss zu stoppen und so weitere Schäden an der Infrastruktur zu verhindern
- Diese Funktion ist besonders wertvoll in Wohngebäuden, Industriegebäuden und kritischen Infrastruktureinrichtungen

Materialliste

Produkttyp von Belimo	Beschreibung	Anzahl
C215QPW-N + CQKA	2-Weg-Auf/Zu-Kugelhahn, Innengewinde, DN 15, Drehantrieb mit Notstellfunktion 520 Nm	4
R2PW + LRF NRFA SRFA	2-Weg-Auf/Zu-Kugelhahn, Innengewinde, DN 1550, Drehantrieb mit Notstellfunktion 520 Nm	3
22HL-10	Leckageschalter aktiv, automatische Rückstellung	4

Eigenschaften	Vorteile
Ventile und Antriebe	
Dichtschliessendes Ventil mit Leckrate A, dicht (EN 12266-1)	Keine Aktivierung bei Nulllast Kein Energieverlust bei Nulllast
Notstellfunktion (0100% einstellbar)	Hohe Betriebssicherheit
Kompakter Gesamtaufbau des CQ-Antriebs	Ideale Raumausnutzung und hohe Gestaltungsfreiheit
Antrieb mit geringem Leistungsverbrauch	Energiekostenreduktion
Schnelle Laufzeit mit 9 s	Schnelle Trinkwarmwasserversorgung
MP-Bus, Modbus RTU, BACnet MS/TP oder konventionelle Ansteuerung	Transparente Betriebsüberwachung durch nahtlose Integration in Automatisierungssysteme
Wartungsfrei und 5 Jahre Garantie	Zuverlässiges Produkt mit Support von Belimo
Sensoren	
Robustes Gehäuse mit Schutzart IP65	Einfache Auswahl und volle Flexibilität für Innen- und Aussenanwendungen
Einrastdeckel	Schnelle, einfache und werkzeuglose Montage
Federzugklemmen	Schnelle Installation und Inbetriebnahme dank werkzeug- losem Verdrahten und einfach durchzuführendem Daten- punkttest
Montageplatte als Bohrschablone nutzbar	Einfache und schnelle Installation

Automatische Absperrung der Trinkwasserleitungen bei Abwesenheit

\rightarrow Pi

Prinzipschema

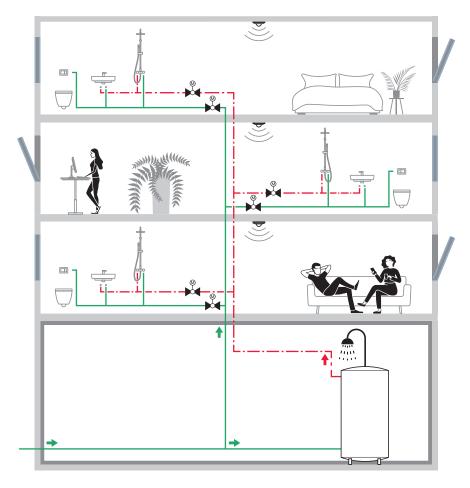


Abbildung beispielhaft

Anwendungsbeschreibung

Motorisierte 2-Weg-Auf/Zu-Trinkwasserventile können zur automatischen Absperrung des Trinkwassers bei Abwesenheit im Gebäude eingesetzt werden, um präventiv Leckagen zu vermeiden.

- Präsenzmelder überwachen die Anwesenheit von Personen im Haus
- Bei längerer Abwesenheit im Gebäude wird die Trinkwasserzufuhr über motorisierte 2-Weg-Trinkwasserventile automatisch abgesperrt
- Diese Funktionalität ist besonders wertvoll in Wohngebäuden, Industriegebäuden und kritischen Infrastruktureinrichtungen
- Sie schützt die Infrastruktur vor Wasserschäden bei Abwesenheit
- Die Sicherheit wird durch die Vermeidung von Leckagen, unnötigem Wasserverbrauch und Manipulationen erhöht

Materialliste

	Produkttyp von Belimo	Beschreibung	Anzahl
A PAIN	C215QPW-N + CQKA	2-Weg-Auf/Zu-Kugelhahn, Innengewinde, DN 15, Drehantrieb mit Notstellfunktion 1 Nm	6

Eigenschaften	Vorteile	
Ventile und Antriebe		
Dichtschliessendes Ventil mit Leckrate A, dicht (EN 12266-1)	Keine Aktivierung bei Nulllast	
	Kein Energieverlust bei Nulllast	
Notstellfunktion (0100% einstellbar)	Hohe Betriebssicherheit	
Kompakter Gesamtaufbau des CQ-Antriebs	Ideale Raumausnutzung und hohe Gestaltungsfreiheit	
Antrieb mit geringem Leistungsverbrauch	Energiekostenreduktion	
Schnelle Laufzeit mit 9 s	Schnelle Trinkwarmwasserversorgung	
MP-Bus, Modbus RTU, BACnet MS/TP oder konventionelle	Transparente Betriebsüberwachung durch nahtlose Integra-	
Ansteuerung	tion in Automatisierungssysteme	
Wartungsfrei und 5 Jahre Garantie	Zuverlässiges Produkt mit Support von Belimo	

Ausschreibungstexte

Hinweis: Die aktuellsten Ausschreibungstexte finden Sie auf unserer Website.

Ventile

C215QPW-N

2-Weg-Auf/Zu-Kugelhahn

Leckrate: A, luftblasendicht (EN 12266-1)
Ventilkörper: Bleifreies und entzinkungsbeständiges

Messing (CW511L)

Schliesskörper: Bleifreies und entzinkungsbeständiges

Messing (CW511L), verchromt

Spindel: Bleifreies und entzinkungsbeständiges

Messing (CW511L)

Spindeldichtung: EPDM

Fabrikat: Belimo
Typ: C215QPW-N

C2150PW-N

R2..PW-.

2-Weg-Auf/Zu-Kugelhahn

Medium:TrinkwasserAnschluss:InnengewindeNennweite:DN 15...50K_{vs}-Wert:16...150 m³/hMediumstemperatur:5...100°C

Zulässiger Betriebsdruck ps: 2500 kPa / 4000 kPa

Leckrate: A, luftblasendicht (EN 12266-1)
Ventilkörper: Bleifreies und entzinkungsbeständiges

Messing (CW511L)

Schliesskörper: Bleifreies und entzinkungsbeständiges

Messing (CW511L), verchromt

Spindel: Bleifreies und entzinkungsbeständiges

Messing (CW511L)

Spindeldichtung: EPDM

Fabrikat: Belimo Typ: R2..PW-..

R2..PW-..

Antriebe

CO..

Drehantrieb für C215QPW-N-Trinkwasserventile. Direktmontage auf das Trinkwasserventil durch Einrasten. Überlastsicher und endschalterlos, Stromabsenkung in Ruhestellung.

Drehmoment: 1 Nm

Nennspannung: AC/DC 24 V, AC 240 V

Ansteuerung: Auf/Zu, 3-Punkt, MP-Bus, Modbus,

BACnet

Leistungsverbrauch:

Betrieb
Ruhestellung
Anschluss:
Laufzeit:
Schutzart:
0.3...1 W
0.2...0.7 W
Kabel
IP40

EMV: CE gemäss 2014/30/EU

Fabrikat: Belimo Typ: CQ..

CQ..

CQK..A

Drehantrieb mit Notstellfunktion für C215QPW-N-Trinkwasserventile. Direktmontage auf das Trinkwasserventil durch Einrasten. Überlastsicher und endschalterlos, Stromabsenkung in Ruhestellung.

Drehmoment: 1 Nm

Nennspannung: AC/DC 24 V, AC 100...240 V

Ansteuerung: Auf/Zu, MP-Bus

Leistungsverbrauch:

Betrieb
Ruhestellung
M
Anschluss:
Kabel
Laufzeit:
Schutzart:
IP40

EMV: CE gemäss 2014/30/EU

Fabrikat: Belimo Typ: CQK..A

CQK..A

LR..A

Drehantrieb zur Verstellung von R2..PW-..-Trinkwasserventilen mit Nennweiten DN 15...25. Direktmontage auf Kugelhahn mit einer zentralen Schraube. Montagewerkzeug ist in der aufsteckbaren Positionsanzeige integriert. Einbaulage bezogen auf den Kugelhahn in 90°-Schritten wählbar. Überlastsicher und endschalterlos, Stromabsenkung in Ruhestellung.

Drehmoment: 5 Nm

Nennspannung: AC/DC 24 V, AC 100...240 V Ansteuerung: Auf/Zu, 3-Punkt, MP-Bus, Modbus,

BACnet

Leistungsverbrauch:

Betrieb: 1.5...2 WRuhestellung: 0.2...0.5 WAnschluss: Kabel

Handverstellung: Mit Drucktaste
Laufzeit: 2.5...150 s
Schutzart: IP54

EMV: CE gemäss 2014/30/EU

Fabrikat: Belimo Typ: LR..A

LR..A

LRF..

Drehantrieb mit Notstellfunktion zur Verstellung von R2...PW-..-Trinkwasserventilen mit Nennweiten DN 15...25. Direktmontage auf Kugelhahn mit einer zentralen Schraube. Einbaulage bezogen auf den Kugelhahn in 90°-Schritten wählbar. Überlastsicher und endschalterlos, Stromabsenkung in Ruhestellung.

Drehmoment: 4 Nm

Nennspannung: AC/DC 24 V, AC 100...240 V

Ansteuerung: Auf/Zu, MP-Bus

Leistungsverbrauch:

BetriebRuhestellungAnschluss:Xabel

Handverstellung: Mit Handkurbel

Laufzeit: 75 s Schutzart: IP54

EMV: CE gemäss 2014/30/EU

Fabrikat: Belimo Typ: LRF..

LRF..

NR..A

Drehantrieb zur Verstellung von R2...PW-..-Trinkwasserventilen bis Nennweite DN 32. Direktmontage auf Kugelhahn mit einer zentralen Schraube. Montagewerkzeug ist in der aufsteckbaren Positionsanzeige integriert. Einbaulage bezogen auf den Kugelhahn in 90°-Schritten wählbar. Überlastsicher und endschalterlos, Stromabsenkung in Ruhestellung.

Drehmoment: 10 Nm

Nennspannung: AC/DC 24 V, AC 100...240 V Ansteuerung: Auf/Zu, 3-Punkt, MP-Bus, Modbus,

BACnet

Leistungsverbrauch:

Betrieb: 2...3 WRuhestellung: 0.2...0.6 WAnschluss: Kabel

Handverstellung: Mit Drucktaste

Laufzeit: 90 s Schutzart IP54

EMV: CE gemäss 2014/30/EU

Fabrikat: Belimo Typ: NR..A

NRF..A

Drehantrieb mit Notstellfunktion zur Verstellung von R2...PW-..-Trinkwasserventilen bis Nennweite DN 32. Direktmontage auf Kugelhahn mit einer zentralen Schraube. Einbaulage bezogen auf den Kugelhahn in 90°-Schritten wählbar. Überlastsicher und endschalterlos, Stromabsenkung in Ruhestellung.

Drehmoment: 10 Nm

Nennspannung: AC 24...240 V, DC 24...125 V Ansteuerung: Auf/Zu, 3-Punkt, MP-Bus

Leistungsverbrauch:

Betrieb: 6 WRuhestellung: 2.5 WAnschluss: Kabel

Handverstellung: Mit Handkurbel

Laufzeit: 75 s Schutzart IP54

EMV: CE gemäss 2014/30/EU

Fabrikat: Belimo Typ: NRF..A

NKF...

SR..A

Drehantrieb zur Verstellung von R2...PW-..-Trinkwasserventilen bis Nennweite DN 50. Direktmontage auf Kugelhahn mit einer zentralen Schraube. Montagewerkzeug ist in der aufsteckbaren Positionsanzeige integriert. Einbaulage bezogen auf den Kugelhahn in 90°-Schritten wählbar. Überlastsicher und endschalterlos, Stromabsenkung in Ruhestellung.

Drehmoment: 20 Nm

Nennspannung: AC/DC 24 V, AC 100...240 V Ansteuerung: Auf/Zu, 3-Punkt, MP-Bus, Modbus,

BACnet

Leistungsverbrauch:

Betrieb: 2.5...3 WRuhestellung: 0.2...0.6 WAnschluss: Kabel

Handverstellung: Mit Drucktaste

Laufzeit: 90 s Schutzart: IP54

EMV: CE gemäss 2014/30/EU

Fabrikat: Belimo Typ: SR..A

SR..A

SRF..A

Drehantrieb mit Notstellfunktion zur Verstellung von R2...PW-..-Trinkwasserventilen bis Nennweite DN 50. Direktmontage auf Kugelhahn mit einer zentralen Schraube. Einbaulage bezogen auf den Kugelhahn in 90°-Schritten wählbar. Überlastsicher und endschalterlos, Stromabsenkung in Ruhestellung.

Drehmoment: 20 Nm

Nennspannung: AC/DC 24 V, AC 24...240 V, DC 24...125 V Ansteuerung: Auf/Zu, MP-Bus, Modbus, BACnet

Leistungsverbrauch:

Betrieb: 5...7 WRuhestellung: 2.5...3.5 WAnschluss: Kabel

Handverstellung: Mit Handkurbel

Laufzeit: 75 s Schutzart: IP54

EMV: CE gemäss 2014/30/EU

Fabrikat: Belimo Typ: SRF..A

SRF..A

Alles inklusive.

Belimo ist Weltmarktführer in Entwicklung, Herstellung und Vertrieb von Feldgeräten zur energieeffizienten Regelung von Heizungs-, Lüftungs- und Klimaanlagen. Klappenantriebe, Regelventile, Sensoren und Zähler bilden dabei unser Kerngeschäft.

Stets den Kundenmehrwert im Fokus, liefern wir mehr als nur Produkte. Bei uns erhalten Sie das komplette Sortiment von Antriebs- und Sensorlösungen zur Regelung und Steuerung von HLK-Systemen aus einer Hand. Dabei setzen wir auf geprüfte Schweizer Qualität mit fünf Jahren Garantie. Unsere Vertretungen in weltweit über 80 Ländern gewährleisten zudem kurze Lieferzeiten und einen umfassenden Support über die gesamte Produktlebensdauer. Bei Belimo ist in der Tat alles inklusive.

Die «kleinen» Belimo-Produkte üben einen grossen Einfluss auf Komfort, Energieeffizienz, Sicherheit, Installation und Instandhaltung aus.

Kurzum: Small devices, big impact.

5 Jahre Garantie

Weltweit vor Ort

Komplettes Sortiment

Geprüfte Qualität

Kurze Lieferzeit

Umfassender Support

