

Butterfly valves for control, open/close and Changeover applications

Edition 03.2025/C

Table of contents

Introduction Control applications and configuration 4 Typical applications Open/close and changeover applications 5 Typical applications Butterfly valve and actuator product range 6 Installation and operation Butterfly valve after a bend Butterfly valve after a T-piece 7 Butterfly valve after a pipe reduction Multiple butterfly valves for control application Butterfly valve as end-of-line service Regular actuation 8 Important in case of butterfly valves - D6..W(L) **Project planning** Design 9 **Pipeline clearances** 2-way control butterfly valves General information Technical data for control mode 10 Opening angle limitation S-shaped characteristic curve Scaled characteristic curve range Definition K_{vmax} and K_{vs} - 11 Opening angle configuration Configuration of the flow characteristic Close-off and max. differential pressure 12 Flow rate at differential pressure 5...40 kPa 13 Formula Δp_{v60} Flow rate at differential pressure 50...90 kPa 14 Formula Δp_{v60} Pressure drop Δp_{v60} at 60% opening angle 15

Table of contents

3-way control butterfly valves

Opening angle configuration	
Constant mixing characteristic curve	16
Flow rate at differential pressure 540 kPa	
Formula Δp _{v60}	
Pressure drop Δp_{v60} at 60% opening angle	17

Open/close butterfly valves

General information	- 18
Open/close butterfly valves in manual operation	- 10
Close-off and max. differential pressure	19
Flow rate at differential pressure 0.013 kPa	
Formula Δp _{v100}	- 20
Flow rate at differential pressure 48 kPa	01
Formula Δp _{v100}	- 21
Pressure drop Δp_{v100} at 100% opening angle	22

Changeover butterfly valves

Formula ∆p	₽v100	23
Pressure dr	op Δp_{v100} at 100% opening angle	24

Definitions

Formula symbols

25

4

Introduction

Control applications and configuration

An opening angle of 60% is recommended as standard for control applications, no matter what the configured characteristic curve is. Belimo butterfly valves exhibit an equal-percentage characteristic curve in accordance with VDI 2173 for opening angles between 0% and 60%.

For butterfly valves with JR.. and PR..BAC actuator, the flow characteristic can be configured to equal-percentage or linear via Belimo Assistant 2 by Near Field Communication (NFC). Thanks to the configurable linear characteristic curve, 3-way control butterfly valves have a constant mixing characteristic curve, which is perfect for control applications.

Typical applications

Chiller start-up circuit

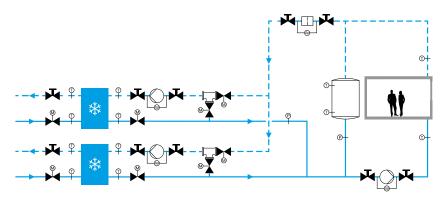


Illustration example

Examples described in detail are listed in the application brochures on heat generation, chillers and cooling towers. Further information: www.belimo.com.

2-way control valve and bypass of the closed cooling tower

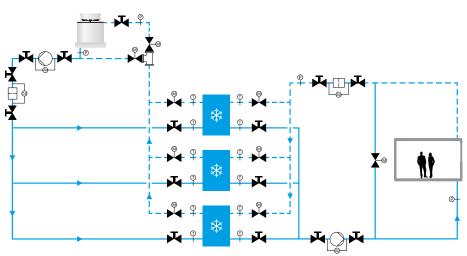


Illustration example

Examples described in detail are listed in the application brochures on heat generation, chillers and cooling towers. Further information: <u>www.belimo.com</u>.

5

Open/close and changeover applications

Energy savings and the reduction of leakages will become even more important in the future. The power outputs of boilers or chilling systems are divided up into different performance level categories. Depending on the load, the boilers or chillers will then be switched on or off. They will be shut off in order to minimise performance loss. The leakage rate shall be kept as low as possible. The pressure drop should be minor when the valve is completely open. These are prerequisites for minimising the electrical power of the pumps and thus for lowering operating costs.

Typical applications

Boiler sequential control

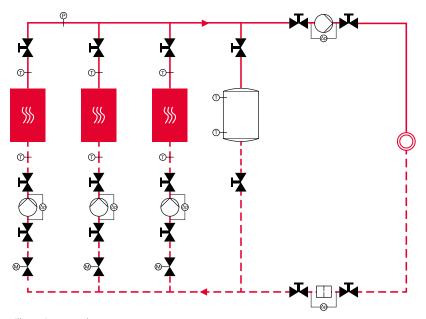
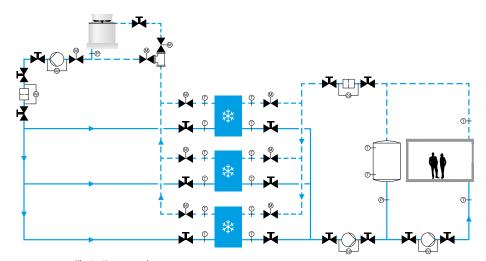



Illustration example

Examples described in detail are listed in the application brochures on heat generation, chillers and cooling towers. Further information: <u>www.belimo.com</u>.

Chiller shut-off and bypass of the closed cooling tower

Illustration example

Examples described in detail are listed in the application brochures on heat generation, chillers and cooling towers. Further information: www.belimo.com.

Butterfly valve and actuator product range

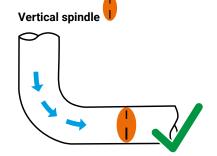
24 V and 230 V rotary actuators with different functionalities, auxiliary switches, and with or without fail-safe in a variety of torque classes ranging from 20 to 3500 Nm are available for the motorisation of the Belimo wafer-type and lug-type butterfly valves (DN 25...700) for indoor and outdoor applications: SR..A-5, SRF..A-5, SR..P-5, GR..A-5, JR.., PR.. and SY..

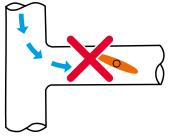
The butterfly valves can also be manually operated with a lever or worm gear, although worm gears are recommended only for indoor applications.

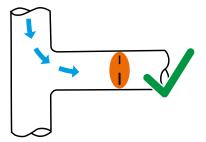
Wafer-type butterfly valve with lever

Lug-type butterfly valve with worm gear

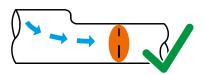
Wafer-type butterfly valve with SR..A-5 actuator

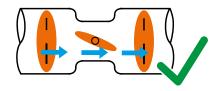

Wafer-type butterfly valve with PR.. actuator

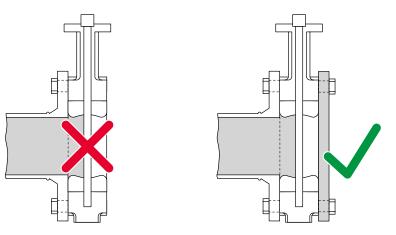

Installation and operation


Butterfly valve after a bend

Horizontal spindle

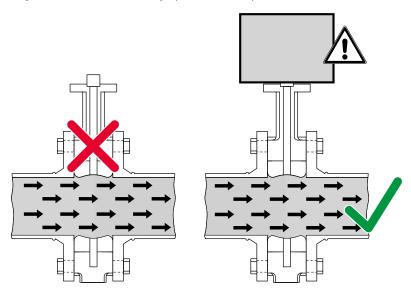

Butterfly valve after a T-piece


Butterfly valve after a pipe reduction


Multiple butterfly valves for control application

8

Butterfly valve as end-of-line service


To ensure that the leakage rate of D6..N(L) and D6..W(L) butterfly valves used as end-of-line service is maintained, a contact pressure on the sealing sleeve by a flange is required on both sides. Installation as end-of-line service without a flange providing contact pressure on both sides is not permissible and leads to a defect in the butterfly valve. Furthermore, a closed flange (blanking flange) must be used with D6..W(L).

Generally speaking, butterfly valves must run through a full cycle at least once per month in order to reduce the breakaway torque and avoid having the closing element become stuck in the sealing!

Regular actuation

Important in case of butterfly valves - D6..W(L)

The butterfly valves D6..W and D6..WL shall not be operated without an actuator or worm gear. In the absence of an actuator or worm gear, the butterfly valve might close and cause damage (water hammer).

Project planning

Design

Pipeline clearances

The data, information and limit values on the data sheets and installation instructions must be observed and complied with.

The minimum clearances between the pipelines and the walls and ceilings required for project planning depend not only on the valve dimensions but also on the selected actuator and can be found in the data sheets of the valves and actuators.

2-way control butterfly valves

General information

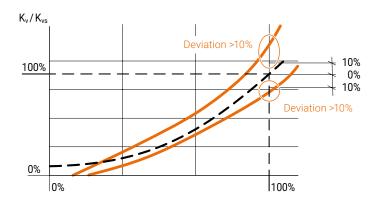
Butterfly valves can be used in control applications when the following values are complied with:

- To ensure a valve attains good control characteristics thus a long service life for the control element, it needs to be correctly designed with the correct valve authority
- The maximum flow velocity of 4 m/s may not be exceeded in the control butterfly valve
- The maximum differential pressure during flow through the control butterfly valve is 300 kPa (3 bar)
- The butterfly valve ensures a rangeability of at least Sv = 30 (with reference to K_{vs} at 60% opening angle)

nnical data for control mode	Differential pressure Δp_{v0} :	≤300 kPa at valve cone opening (may not be exceeded)
	Differential pressure Δp_{v60} :	The values listed in the differential pressure table must be complied with
	Rangeability:	>30 (at 60% opening angle)
ning angle limitation	The S-shaped characteristic	curve of the butterfly value (BEV) does not correspond

The S-shaped characteristic curve of the butterfly valve (BFV) does not correspond to the equal-percentage characteristic curve pursuant to VDI 2173. It is only in the angle of rotation range between 0% and 60% that one can speak of an equal-percentage characteristic curve. At an opening angle of 60%, the K_{vs} corresponds to approx. 35% of K_{vmax} value at 100% opening angle.

K_v / K_{vmax} 100% S-shaped characteristic curve e.g. D650N Flow 50% Theoretical equal-percentage characteristic curve K_{vs} 35% S-shaped characteristic curve e.g. D6300W 0% 60% 20% 40% 80% 100% 0%

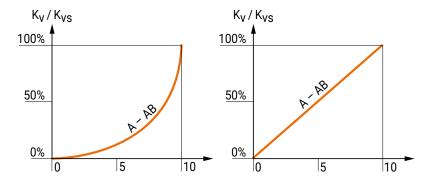

Opening angle

Tech

Opening angle limitation

S-shaped characteristic curve

Scaled characteristic curve range


The term K_v value is used to designate the flow factor or flow coefficient (catalogue value). The K_v value corresponds to the flow of water through a valve (in m³/h or l/min) at a differential pressure of 100 kPa (1 bar), a water temperature of 5...40°C and a defined opening angle.

Accordingly, the K_{vmax} is the K_v value of the butterfly valve at 100% opening angle (completely open) and K_{vs} is the K_v value at 60% opening angle.

An opening angle of 60% is recommended as standard for control applications, no matter what the configured characteristic curve is. Depending on the desired K_v value, the opening angle for motorising with the JR.. and PR..BAC actuator can be set with a smartphone by Belimo Assistant 2 via NFC. In case of motorising with the SR or GR actuators, the desired angle of rotation range for MF and MP types can be set via PC-Tool MFT-P, as from Version 3.3 (does not apply to SY actuators).

Configuration of the flow characteristic

For butterfly valves with JR.. and PR..BAC actuator, the flow characteristic can be configured to equal percentage or linear via Belimo Assistant 2 (NFC).

Definition K_{vmax} and K_{vs}

Opening angle configuration

Close-off and max. differential pressure

		Actuators											
		SR		G	GR		JR		PR				
2-way control butterfly valves DN 25300	DN [mm]	Δp _s [kPa]	Δp _{max} [kPa]										
D625N(L)	25	1200	300	1200	300								
D632N(L)	32	1200	300	1200	300								
D640N(L)	40	1200	300	1200	300								
D650N(L)	50	1200	300	1200	300	1200 ¹⁾	300						
D665N(L)	65	1200	300	1200	300	1200 ¹⁾	300						
D680N(L)	80			1200	300	1200 ¹⁾	300						
D6100W(L)	100					1400 1)	300						
D6125W(L)	125					1400 ²⁾	300						
D6150W(L)	150					1400 2)	300						
D6200W(L)	200							1400 3)	300				
D6250W(L)	250							1400 ³⁾	300				
D6300W(L)	300							1400 ³⁾	300				

¹⁾ ZJR03 linkage
 ²⁾ ZJR01 linkage
 ³⁾ ZPR01 linkage

SY6											
	SY	SY7		SY8		SY9		SY10		SY12	
Δp _{max} [kPa]	Δp _s [kPa]	Δp _{max} [kPa]	Δp _s [kPa]	Δp _{max} [kPa]	Δp _s [kPa]	Δp _{max} [kPa]	Δp _s [kPa]	Δp _{max} [kPa]	Δp _s [kPa]	Δp _{max} [kPa]	
300	1200 ¹⁾	300									
300	1200 ³⁾	300									
	600 ⁴⁾	300	1200 4)	300							
			600 ⁴⁾	300	1200 5)	300					
							600 ⁶⁾	300	1000 6)	300	
									200 7)	200	
2	[kPa] 300	[kPa] [kPa] 300 1200 ¹⁾ 300 1200 ³⁾	[kPa] [kPa] [kPa] 300 1200 ¹⁾ 300 2) 300 1200 ³⁾ 300	[kPa] [kPa] [kPa] [kPa] 300 1200 ¹⁾ 300 300 1200 ³⁾ 300 300 600 ⁴⁾ 300 1200 ⁴⁾	$\begin{array}{ c c c c c c c c c } \hline [kPa] & [kPa] & [kPa] & [kPa] & [kPa] \\ \hline 300 & 1200^{11} & 300 & & & \\ \hline 300 & 1200^{31} & 300 & & & \\ \hline 300 & 1200^{31} & 300 & & & \\ \hline & 600^{41} & 300 & 1200^{41} & 300 \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[kPa] [kPa] <t< td=""><td>[kPa] [kPa] <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<></td></t<>	[kPa] [kPa] <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

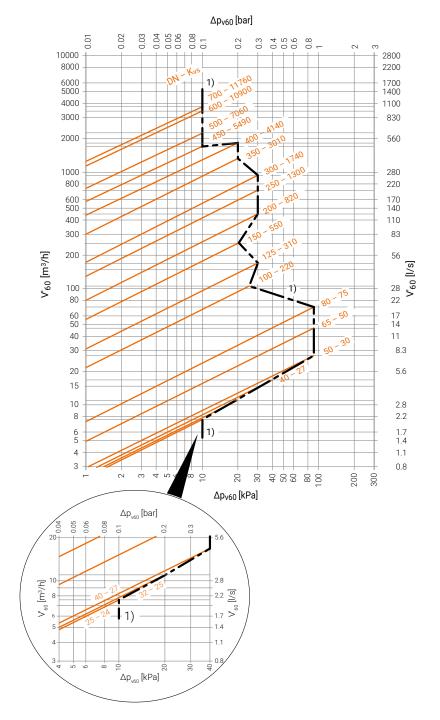
¹⁾ ZSY-703 linkage ²⁾ ZSY-401 linkage ³⁾ ZSY-701 linkage ⁴⁾ ZSY-702 linkage ⁵⁾ ZSY-902 linkage ⁶⁾ ZSY-902 linkage ⁷⁾ ZSY-903 linkage

Flow rate at differential pressure 5...40 kPa

			Differential	pressure ∆p	0 _{v60}					
			5 [kPa]	10 [kPa]	20 [kPa]	30 [kPa]	40 [kPa]			
2-way control butterfly valves DN 25700	DN [mm]	K _{vs} [m³/h]	Flow rate V	₅₀ [m³/h]						
D625N(L)	25	24	5.4	7.6						
D632N(L)	32	25	5.6	7.9	11.2					
D640N(L)	40	27	6.0	8.5	12.1	14.8	17.1			
D650N(L)	50	30	6.7	9.5	13.4	16.4	19			
D665N(L)	65	50	11.2	15.8	22	27	32			
D680N(L)	80	75	16.8	24	34	41	47			
D6100W(L)	100	220	49	70	98					
D6125W(L)	125	310	69	98	139	169				
D6150W(L)	150	550	123	174	246					
D6200W(L)	200	820	183	259	367	449				
D6250W(L)	250	1300	291	411	581	712				
D6300W(L)	300	1740	389	550	778	953				
D6350N(L)	350	3010	673	952	1346					
D6400N(L)	400	4140	926	1309	1851					
D6450N(L)	450	5490	1228	1736						
D6500N(L)	500	7060	1579	2233						
D6600N(L)	600	10900	2437	3447						
D6700N(L)	700	11760	2630	3719						

Formula Δp_{v60}

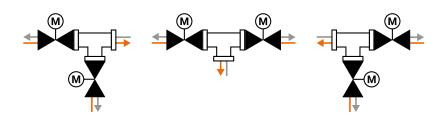
 $\Delta p_{v60} = \left(\frac{V'_{60}}{K_{vs}}\right)^2 \cdot 100 \qquad \Delta p_{v60} \qquad : [kPa] \\ V'_{60} \qquad : [m^3/h] \\ K_{vs} \qquad : [m^3/h]$


Flow rate at differential pressure 50...90 kPa

			Differentia	l pressure Δ	P _{v60}			
			50 [kPa]	60 [kPa]	70 [kPa]	80 [kPa]	90 [kPa]	
2-way control butterfly valves DN 25700	DN [mm]	K _{vs} [m³/h]	Flow rate V	' ₆₀ [m³/h]				
D625N(L)	25	24						
D632N(L)	32	25						
D640N(L)	40	27						
D650N(L)	50	30	21	23	25	27	28	
D665N(L)	65	50	35	39	42	45	47	
D680N(L)	80	75	53	58	63	67	71	
D6100W(L)	100	220						
D6125W(L)	125	310						
D6150W(L)	150	550						
D6200W(L)	200	820						
D6250W(L)	250	1300						
D6300W(L)	300	1740						
D6350N(L)	350	3010						
D6400N(L)	400	4140						
D6450N(L)	450	5490						
D6500N(L)	500	7060						
D6600N(L)	600	10900						
D6700N(L)	700	11760						

Formula Δp_{v60}

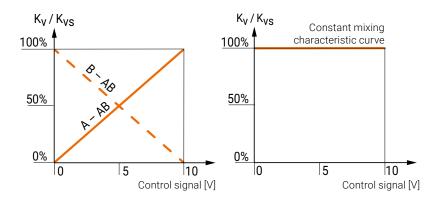
$$\Delta p_{v60} = \left(\frac{V'_{60}}{K_{vs}}\right)^2 \cdot 100 \qquad \begin{array}{c} \Delta p_{v60} & : [kPa] \\ V'_{60} & : [m^3/h] \\ K_{vs} & : [m^3/h] \end{array}$$



¹⁾ The maximum flow velocity in the butterfly valves is 4 m/s.

Δp _{v60}	Differential pressure at 60% opening angle
Δp _{v60}	
V'60	Nominal flow rate at Δp_{v60}
K _{vs}	K_{ν} value of the butterfly valve at 60% opening angle

3-way control butterfly valves

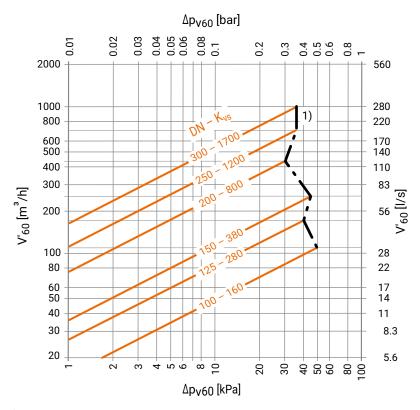


Opening angle configuration

An opening angle of 60% is recommended as standard for control applications, no matter what the configured characteristic curve is. Depending on the desired K_v value, the opening angle for motorising with the JR.. and PR..BAC actuator can be set with a smartphone by Belimo Assistant 2 via NFC.

Constant mixing characteristic curve

For butterfly valves with JR.. and PR..BAC actuator, the flow characteristic can be configured to linear via Belimo Assistant 2 (NFC). Thanks to the configurable linear characteristic curve, 3-way control butterfly valves have a constant mixing characteristic curve, which is perfect for control applications.


Flow rate at differential pressure 5...40 kPa

		Differential pressure Δp_{v60}								
		5 [kPa]	10 [kPa]	15 [kPa]	20 [kPa]	25 [kPa]	30 [kPa]	35 [kPa]	40 [kPa]	
DN [mm]	K _{vs} [m³/h]	Flow rate V' ₆₀ [m³/h]								
100	160	35	50	60	70	80	90	95	100	
125	280	65	90	110	125	140	155	165		
150	380	85	120	145	170	190	210	225	240	
200	800	180	250	300	360	400	440			
250	1200	260	370	460	530	600	650	700		
300	1700	380	530	660	760	850	925	1000		
	[mm] 100 125 150 200 250	[mm] [m³/h] 100 160 125 280 150 380 200 800 250 1200	DN Kvs Flow rate V 100 160 35 125 280 65 150 380 85 200 800 180 250 1200 260	S 10 [kPa] [kPa] DN Kvs [mm] [m³/h] Flow rate V'60 [m³/h] 100 160 35 50 125 280 65 380 85 120 200 800 180 250 250 1200 260 370	Image: Street with the second symbol symbo	N Kys I0 15 20 [mm] [m³/h] Flow rate V'60 [m³/h] [kPa] [kPa] 100 160 35 50 60 70 125 280 65 90 110 125 150 380 85 120 145 170 200 800 180 250 300 360 250 1200 260 370 460 530	N Kys Flow rate V'60 [m³/h] 15 20 25 [kPa] 20 25 [kPa] 20 25 [kPa] 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 30 30 30 30 30 30 30 30 30 30 30 400 30 400 30 400 30 400 <th< td=""><td>N 5 10 15 20 25 30 [kPa] [kP</td><td>N 5 10 15 20 25 30 35 Imm 5 10 [kPa] 15 20 25 30 35 DN Kys [m³/h] Flow rate V'60 [m³/h] Image: Contract Contrent 1200</td></th<>	N 5 10 15 20 25 30 [kPa] [kP	N 5 10 15 20 25 30 35 Imm 5 10 [kPa] 15 20 25 30 35 DN Kys [m³/h] Flow rate V'60 [m³/h] Image: Contract Contrent 1200	

Formula Δp_{v60}

$$\Delta p_{v60} = \left(\frac{V'_{60}}{K_{vs}}\right)^2 \cdot 100 \qquad \Delta p_{v60} : [kPa] \\ V'_{60} : [m^3/h] \\ K_{vs} : [m^3/h]$$

Pressure drop Δp_{v60} at 60% opening angle

¹⁾ The maximum flow velocity in the butterfly valves is 4 m/s.

- Differential pressure at 60% opening angle Δp_{v60} ∆p_{v60} V'60 Nominal flow rate at Δp_{v100}
- **K**vs K_{ν} value of the butterfly valve at 60% opening angle

Open/close butterfly valves

General information

The open/close and changeover butterfly valves can be used when the following values are complied with:

- The maximum flow velocity of 4 m/s may not be exceeded in the valve

 The butterfly valve is to be selected according to the principle "Nominal pipe diameter = Nominal valve diameter" to keep the pressure drop as low as possible

Open/close butterfly valves in manual operation

Open/close			Manual operation	
butterfly valves DN 25700	DN [mm]	ζ zeta value	Lever	Worm gear ¹⁾
D625N(L)	25	0.25	ZD6N-H100	ZD6N-S100
D632N(L)	32	0.55	ZD6N-H100	ZD6N-S100
D640N(L)	40	0.97	ZD6N-H100	ZD6N-S100
D650N(L)	50	1.00	ZD6N-H100	ZD6N-S100
D665N(L)	65	0.99	ZD6N-H100	ZD6N-S100
D680N(L)	80	0.97	ZD6N-H100	ZD6N-S100
D6100W(L)	100	0.34		ZD6N-S100
D6125W(L)	125	0.40		ZD6N-S150
D6150W(L)	150	0.26		ZD6N-S150
D6200W(L)	200	0.53		ZD6N-S150
D6250W(L)	250	0.35		ZD6N-S150
D6300W(L)	300	0.40		ZD6N-S150
D6350N(L)	350	0.23		ZD6N-S350
D6400N(L)	400	0.20		ZD6N-S400
D6450N(L)	450	0.19		ZD6N-S450
D6500N(L)	500	0.17		ZD6N-S500
D6600N(L)	600	0.15		ZD6N-S600
D6700N(L)	700	0.21		ZD6N-S700

¹⁾ Worm gears are not suitable for outdoor applications.

Close-off and max. differential pressure

		Actuators	5						
		SR		G	R	JF	۲	PI	२
Open/close butterfly valves DN 25300	DN [mm]	Δp _s [kPa]	Δp _{max} [kPa]	Δp _s [kPa]	Δp _{max} [kPa]	Δp _s [kPa]	Δp _{max} [kPa]	Δp _s [kPa]	∆p _{max} [kPa]
D625N(L)	25	1200	300	1200	300				
D632N(L)	32	1200	300	1200	300				
D640N(L)	40	1200	300	1200	300				
D650N(L)	50	1200	300	1200	300	1200 ¹⁾	300		
D665N(L)	65	1200	300	1200	300	1200 ¹⁾	300		
D680N(L)	80			1200	300	1200 ¹⁾	300		
D6100W(L)	100					1400 ¹⁾	300		
D6125W(L)	125					1400 ²⁾	300		
D6150W(L)	150					1400 ²⁾	300		
D6200W(L)	200							1400 ³⁾	300
D6250W(L)	250				·			1400 ³⁾	300
D6300W(L)	300							1400 3)	300

¹⁾ ZJR03 linkage
 ²⁾ ZJR01 linkage
 ³⁾ ZPR01 linkage

		Actuato	rs										
		SY6		SY7		SY8		SY9		SY10		SY12	
Open/close butterfly valves DN 350700	DN [mm]	Δp _s [kPa]	Δp _{max} [kPa]										
D6350N(L)	350	600	300	1200 ¹⁾	300								
D6400N(L)	400	600 ²⁾	300	1200 ³⁾	300								
D6450N(L)	450			600 ⁴⁾	300	1200 4)	300						
D6500N(L)	500					600 ⁴⁾	300	1200 5)	300				
D6600N(L)	600									600 ⁶⁾	300	1000 6)	300
D6700N(L)	700											200 7)	200

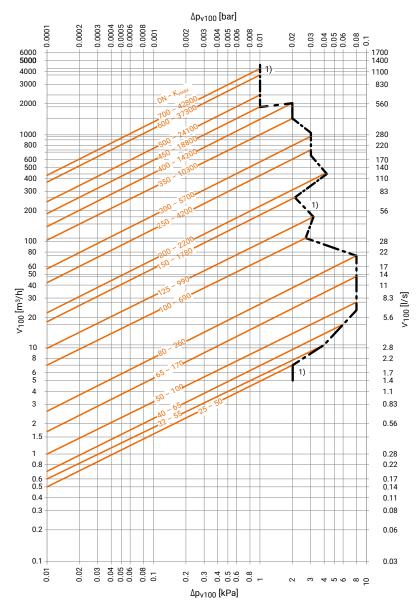
¹⁾ ZSY-703 linkage
 ²⁾ ZSY-401 linkage
 ³⁾ ZSY-701 linkage
 ⁴⁾ ZSY-702 linkage
 ⁵⁾ ZSY-901 linkage
 ⁶⁾ ZSY-902 linkage
 ⁷⁾ ZSY-903 linkage

Flow rate at differential pressure 0.01...3 kPa

	Differential pressure Δp_{v100}						
			0.01 [kPa]	0.1 [kPa]	1 [kPa]	2 [kPa]	3 [kPa]
Open/close butterfly valves DN 25700	DN [mm]	K _{vmax} [m ³ /h]	Flow rate V	₁₀₀ [m³/h]			
D625N(L)	25	50	0.5	1.6	5	7	
D632N(L)	32	55	0.6	1.7	5.5	7.8	9.5
D640N(L)	40	65	0.7	2.0	6.5	9.2	11.3
D650N(L)	50	100	1.0	3.2	10	14.1	17.3
D665N(L)	65	170	1.7	5.4	17	24	29
D680N(L)	80	260	2.6	8.2	26	37	45
D6100W(L)	100	690	6.9	22	69	98	
D6125W(L)	125	990	9.9	31	99	140	172
D6150W(L)	150	1400	14	44	140	198	
D6200W(L)	200	2200	22	70	220	311	381
D6250W(L)	250	4200	42	133	420	594	727
D6300W(L)	300	5700	57	180	570	806	987
D6350N(L)	350	10300	103	326	1030	1457	
D6400N(L)	400	14200	142	449	1420	2008	
D6450N(L)	450	18800	188	595	1880		
D6500N(L)	500	24100	241	762	2410		
D6600N(L)	600	37300	373	1180	3730		
D6700N(L)	700	42800	428	1353	4280		

Formula Δp_{v100}

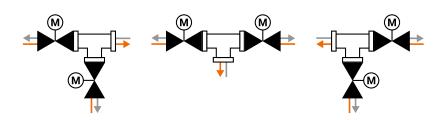
 $\Delta p_{v100} = \left(\frac{V_{100}^{*}}{K_{vmax}}\right)^{2} \cdot 100 \qquad \begin{array}{l} \Delta p_{v100} & : [kPa] \\ V_{100}^{*} & : [m^{3}/h] \\ K_{vmax} & : [m^{3}/h] \end{array}$


Flow rate at differential pressure 4...8 kPa

			Differential pressure Δp_{v100}							
			4 [kPa]	5 [kPa]	6 [kPa]	7 [kPa]	8 [kPa]			
Open/close butterfly valves DN 25700	DN [mm]	K _{vmax} [m³/h]	Flow rate V	' ₁₀₀ [m³/h]						
D625N(L)	25	50								
D632N(L)	32	55	11							
D640N(L)	40	65	13	14.5	16	17.2				
D650N(L)	50	100	20	22	24	26	28			
D665N(L)	65	170	34	38	42	45	48			
D680N(L)	80	260	52	58	64	69	74			
D6100W(L)	100	690								
D6125W(L)	125	990								
D6150W(L)	150	1780								
D6200W(L)	200	2200	440							
D6250W(L)	250	4200								
D6300W(L)	300	5700								
D6350N(L)	350	10300								
D6400N(L)	400	14200								
D6450N(L)	450	18800								
D6500N(L)	500	24100								
D6600N(L)	600	37300								
D6700N(L)	700	42800								

Formula Δp_{v100}

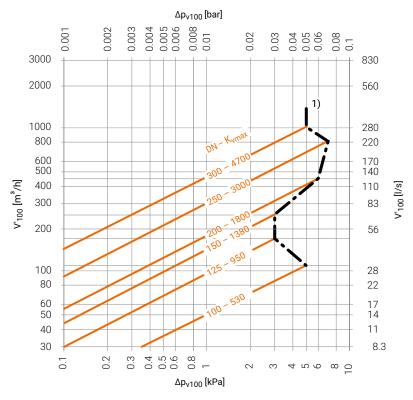
 $\Delta p_{v100} = \left(\frac{V'_{100}}{K_{vmax}}\right)^2 \cdot 100 \qquad \begin{array}{l} \Delta p_{v100} & : [kPa] \\ V'_{100} & : [m^3/h] \\ K_{vmax} & : [m^3/h] \end{array}$


Pressure drop Δp_{v100} at 100% opening angle

¹⁾ The maximum flow velocity in the butterfly valves is 4 m/s.

 $\begin{array}{lll} \Delta p_{v100} & \mbox{Differential pressure at 100\% opening angle} \\ \Delta p_{v100} & \mbox{----} \\ V_{100}^{\prime} & \mbox{Nominal flow rate at } \Delta p_{v100} \\ K_{vmax} & \mbox{K}_v \mbox{value of the butterfly valve at 100\% opening angle} \end{array}$

Changeover butterfly valves


Flow rate at differential pressure 1...6 kPa

			Differential pressure Δp_{v100}							
			1 [kPa]	2 [kPa]	3 [kPa]	4 [kPa]	5 [kPa]	6 [kPa]		
Changeover butterfly valves DN 100300	DN [mm]	K _{vmax} [m³/h]	Flow rate V	' ₁₀₀ [m³/h]						
D7100WL/BAC	100	530	55	75	90	105				
D7125WL/BAC	125	950	95	135	165					
D7150WL/BAC	150	1380	140	195	240					
D7200WL/BAC	200	1800	180	255	300	340	380	440		
D7250WL/BAC	250	3000	300	424	500	600	650	700		
D7300WL/BAC	300	4700	470	665	760	890	1000			

Formula Δp_{v100}

 $\Delta p_{v100} = \left(\frac{V'_{100}}{K_{vmax}}\right)^2 \cdot 100 \qquad \Delta p_{v100} : [kPa] \\ V'_{100} : [m^3/h] \\ K_{vmax} : [m^3/h]$

Pressure drop Δp_{v100} at 100% opening angle

 $^{\mbox{\tiny 1)}}$ The maximum flow velocity in the butterfly valves is 4 m/s.

 $\begin{array}{lll} \Delta p_{v100} & \mbox{Differential pressure at 100\% opening angle} \\ \Delta p_{v100} & \mbox{----} \\ V_{100}^{\prime} & \mbox{Nominal flow rate at } \Delta p_{v100} \\ K_{vmax} & \mbox{K}_v \mbox{value of the butterfly valve at 100\% opening angle} \end{array}$

Definitions

Formula symbols

Kv	Flow rate factor or flow coefficient (catalogue value). The K _v value corresponds to the flow of water through a valve (in m^3/h or I/min) at a differential pressure of 100 kPa (1 bar), a water temperature of 540°C and a defined opening angle
K _{vmax}	$\rm K_v$ value of the butterfly valve at 100% opening angle
K _{vs}	$\mathrm{K_v}$ value of the butterfly value at 60% opening angle
Δp _s	Close-off pressure at which the actuator can still seal the butterfly valve tightly allowing for the appropriate leakage rate
Δp _{v100}	Maximum permissible differential pressure in compliance with the flow velocity of 4 m/s with butterfly valve completely open (100%)
Δp _{v60}	Maximum permissible differential pressure in compliance with the flow velocity of 4 m/s at 60% opening angle of the butterfly valve
Δp _{v0}	Differential pressure at closing element opening
V' ₁₀₀	Nominal flow rate at Δp_{v100}
V' ₆₀	Nominal flow rate at Δp_{v60}
ζ value	Zeta ζ is the coefficient for the pressure drop through the fully opened butterfly valve (100%)
Further documentation	 Data sheets butterfly valves and actuators Installation instructions butterfly valves and actuators General notes for project planning

- Application brochure for chillers and cooling towers
- Application brochure for heat generation

All inclusive.

Belimo is the global market leader in the development, production, and sales of field devices for the energy-efficient control of heating, ventilation and air-conditioning systems. The focus of our core business is on damper actuators, control valves, sensors and meters.

Always focusing on customer value, we deliver more than only products. We offer you the complete product range for the regulation and control of HVAC systems from a single source. At the same time, we rely on tested Swiss quality with a five-year warranty. Our worldwide representatives in over 80 countries guarantee short delivery times and comprehensive support through the entire product life. Belimo does indeed include everything.

The "small" Belimo devices have a big impact on comfort, energy efficiency, safety, installation and maintenance.

In short: Small devices, big impact.

